<< Forum maths || En bas
Message de mibk7793 posté le 22-11-2010 à 19:30:56 (S | E | F)
Bonsoir,
Pouvez-vous m'aider je n'ai encore jamais rien fait sur ce sujet???
Démontrer que les fonctions f suivantes sont dérivables en a et déterminer f'(a).
a) f:x->x^3+2 en a=-4
b) f:x-> 1/(x-1) en a=2
Je vous remercie d'avance pour votre aide.
-------------------
Modifié par bridg le 22-11-2010 19:51
Réponse: Nombre dérivé 1S de nick94, postée le 22-11-2010 à 20:30:46 (S | E)
IL faut regarder son cours et l'appliquer aux fonctions
Réponse: Nombre dérivé 1S de janus, postée le 24-11-2010 à 22:19:10 (S | E)
pour montrer que tes fonctions sont dérivables tu doit démontrer que f(a) éxiste et dans ce cas tu te sert des propriétés de dérivabilité genre (u+v)'=u'+v' pour trouver ta dérivée
Réponse: Nombre dérivé 1S de fandechimie, postée le 27-11-2010 à 23:30:30 (S | E)
Bonjour !
Je suis en 1°S actuellement et je suis justement en train de bosser sur les dérivées...qui, je l'avoue, n'est pas un sujet facile...

Ce que j'ai appris là dessus, c'est que la dérivée notée f'(xa) est en fait le coefficient directeur de la tangente en le point A de coordonées (xa;ya), c'est à dire que ta tangente, étant une droite d'équation y = ax+b avec a = f'(xa).
Pour ce qui est des dérivées, il faut agir comme le dit janus, soit en utilisant des formules toutes faites.
Pour la première, (u+v)' = u'+v';
pour la seconde, (u/v)' = (u'v-uv')/v^2.
J'espère t'avoir aidé et ne pas avoir trop dit

Voilà !

Si tu as des questions à me poser, ma messagerie reste ouverte .

Réponse: Nombre dérivé 1S de taconnet, postée le 28-11-2010 à 01:10:45 (S | E)
Bonjour.
La foncion f est définie sur un intervalle I. a ∈ I
Dire que la fonction f est dérivable en a c'est dire que :
On dit alors que f est dérivable en a et admet k pour nombre dérivé en a.
<< Forum maths